RTQA in clinical trials: Future needs

Coen Hurkmans, clinical physicist
Catharina Hospital Eindhoven
The Netherlands
Content

• The Global Harmonisation Group
• Harmonising RTQA in trials
• Future needs for prospective Individual Case Review
• Standardising Nomenclature for Radiation Therapy
• RTQA of imaging
• Conclusions
The Global Harmonisation Group

Established in 2010, Goals:

• Collate, homogenise and distribute information regarding RTQA standards,

• Provide a platform for prospective discussions on new RTQA procedures, software tools,

• Provide a framework to endorse RTQA procedures across various trial groups.

Editorial

Radiation therapy quality assurance in clinical trials – Global harmonisation group

Christos Melidisa,*, Walter R. Boschb, Joanna Izewskac, Elena Fidarovad, Eduardo Zubizarretad, Satoshi Ishikurae, David Followillf, James Galving, Ying Xiaog, Martin A. Eberth, Tomas Kroni, Catharine H. Clarkj, Elizabeth A. Milesj, Edwin G.A. Airdj, Damien C. Webera, Kenneth Ulink, Dirk Verellenl, Coen W. Hurkmansa
Harmonising RTQA in trials

Why global cooperation and harmonization is needed:

• To create sufficiently large patient datasets within a reasonable period.

• To create broader acceptance of the trial results and thus the impact of the trial.

• Proper quality assurance of radiotherapy results in a stronger statistical power of trial result. Thus, fewer patients have to be accrued.
Harmonising RTQA in trials

What do the following procedures have in common?

• Benchmark case
• Dummy Run
• Rapid Review
• Pre-trial case review
• Data submission test
• Digital data integrity quality assurance
• Dry run

Melidis et al. IJROBP 90(5) 1242, 2014
Harmonising RTQA in trials

Current GHG projects:
• Endorsement of External Reference Dosimetry Audits
• Endorsement of IMRT/VMAT credentialing standards
Automated prospective ICR

EORTC Lungtech trial

• Stereotactic ablative radiotherapy (SABR) of inoperable centrally located NSCLC

• Phase II, non-randomized, single arm, multicenter trial

• Prospective ICR review (delineation and planning) for all accrued patients

• Time between submissions and review: 3 days

• Time for corrections: 3 days

4D-CT RT planning—using 3D FDG-PET/CT^b co-matching

Image guided SBRT with CBCT verification 7.5 Gy × 8 fractions = 60 Gy

2-3 weeks

RTQA Central Review: delineation and treatment planning

Treatment plan confirmation will be sent via email to the site

Upload on EORTC Radiotherapy platform

Upload on EORTC Radiotherapy platform

RTQA Central Review (retrospective): treatment verification CBCT
Automated prospective ICR

<table>
<thead>
<tr>
<th>Atlas Development</th>
<th>Refine tolerance criteria</th>
<th>Apply auto-QART contour tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchmarking exercise with multiple data sets and observers</td>
<td>Limited data set</td>
<td>Complete data set</td>
</tr>
<tr>
<td>Generate Atlas based on benchmarking data</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compare sensitivity and specificity of Auto-QART against manual review</td>
</tr>
</tbody>
</table>

Courtesy of Lois Holloway, University of New South Wales
Automated prospective ICR
Automated prospective ICR

VODCA - Data Verification Report

Verification Protocol : EORTC 0

Patient ID = RMH^LunaTech^08^MK^ / Patient Name = RMH^LunaTech^08^MK^

CT: "***":

⇒ Patient orientation = "L\P" ?
⇒ Patient orientation = "L\P"

CT: "***":

⇒ Number of slices > 50 ?
⇒ Number of slices = 167

= Meets Protocol = Minor Variation = Requires Attention
Automated prospective ICR

RD: "Serie1" - DVH: "SBRT-plan - Esophagus"

$V(D=40\text{Gy}) < 0.50 \text{ cc of the structure} \Rightarrow V(D=40\text{Gy}) = 0.00 \text{ cc}$
Automated prospective ICR

Santanam et al, IJROBP 2012

<table>
<thead>
<tr>
<th>Organ at risk name</th>
<th>Left/right</th>
<th>Margin (mm)</th>
<th>Proposed name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpinalCord</td>
<td>N/A</td>
<td>Nonuniform</td>
<td>SpinalCord_PRV</td>
</tr>
<tr>
<td>SpinalCord PRV</td>
<td>N/A</td>
<td>5</td>
<td>SpinalCord_05</td>
</tr>
<tr>
<td>Parotid</td>
<td>Left</td>
<td>0</td>
<td>Parotid_L</td>
</tr>
<tr>
<td>Parotid</td>
<td>Right</td>
<td>0</td>
<td>Parotid_R</td>
</tr>
<tr>
<td>Total parotid</td>
<td>Left+Right</td>
<td>0</td>
<td>Parotids</td>
</tr>
<tr>
<td>Kidney</td>
<td>Left</td>
<td>10</td>
<td>Kidney_L_10</td>
</tr>
</tbody>
</table>
AAPM TG 263: Standardised naming

- Representation from IROC, NRG, IHE-RO, DICOM WG-7, ASTRO, EORTC, GHG and TPS vendors
- Started in 2014
- Aimed at broad acceptance and implementation
- Includes standardisation of DVH reporting, e.g., regarding volume segmentation
Standardizing structure nomenclature
RTQA of imaging: CT

ACR phantom for standard CT QA...
RTQA of imaging: 4D-CT

Respiratory correlated (4D)-CT
RTQA of imaging: 4D-CT

Respiratory correlated (4D)-CT

0%

mid ventilation

other phase
RTQA of imaging: 4D-CT

Respiratory correlated (4D)-CT
Stationary

mid ventilation

In trials: Need for standard image acquisition and processing protocols
RTQA of imaging: MRI

ACR phantom for standard MRI QA...
RTQA of imaging: MRI

In trials: Need for standard image acquisition and processing protocols

3D FLAIR | DTI | 3D T1-W | rs-fMRI | SWI

White matter lesions | White matter microstructure | Gray matter volume e.g. hippocampus | Brain networks Connectivity | Microbleeds

Courtesy from M de Ruiter and S Deprez, NKI-AvL
RTQA of imaging: MRI

Fully automated segmentation

Courtesy from M de Ruiter and S Deprez, NKI-AvL
RTQA of imaging: PET-CT

DOI 10.1007/s00259-009-1297-4

GUIDELINES

FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0
RTQA of imaging: 4D PET-CT

Transversal Coronal Sagittal

In trials: Need for standard image acquisition and processing protocols
“HOW ARE YOU DOING ON YOUR SIDE?”
Acknowledgements

M. Lambrecht, Catharina Hospital, The Netherlands
M de Ruiter and S Deprez, NKI-AvL, The Netherlands
Lois Holloway, University of New South Wales, Australia
Global Harmonisation Group
EORTC-Radiation Oncology Group
Dept. of Radiation Oncology, Catharina Hospital, The Netherlands